Schwann cell dedifferentiation is independent of mitogenic signaling and uncoupled to proliferation: role of cAMP and JNK in the maintenance of the differentiated state.

نویسندگان

  • Paula V Monje
  • Jennifer Soto
  • Ketty Bacallao
  • Patrick M Wood
چکیده

Myelinating Schwann cells (SCs) are highly plastic cells that are able to dedifferentiate and re-enter the cell cycle. However, the molecular signals controlling dedifferentiation are not completely understood. Because a connection between mitogenic signaling and myelin loss has been suggested, we investigated the role of cAMP, a strong inducer of the myelinating phenotype, and mitogenic factors activating receptor tyrosine kinases (RTKs) on SC dedifferentiation. We herein provide evidence indicating that cAMP was required to not only initiate but also maintain a state of differentiation because SCs rapidly dedifferentiated and became competent to resume proliferation upon the removal of cAMP stimulation. Surprisingly, isolated SCs could undergo multiple cycles of differentiation and dedifferentiation upon cAMP addition and removal, respectively, in the absence of mitogenic factors and without entering the cell cycle. Conversely, the activation of RTKs and the ERK cascade by a variety of growth factors, including neuregulin, was not sufficient to initiate dedifferentiation in the presence of cAMP. Importantly, a reduction of cAMP triggered dedifferentiation through a mechanism that required JNK, rather than ERK, activity and an induction of the expression of c-Jun, a transcriptional inhibitor of myelination. In summary, the reversible transition from an undifferentiated to a myelinating state was dependent on cAMP but independent of RTK signaling and cell cycle progression, further indicating that dedifferentiation and proliferation are uncoupled and differentially regulated events in SCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Melatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways

Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

The role of the desert hedgehog signaling pathway during degeneration and regeneration of peripheral nerves

The desert hedgehog (Dhh) signaling pathway is involved in the development of peripheral nerves (PNs). Dhh-null mice show abnormal neuronal development and perineurial barrier function. As it was previously shown that dhh is mainly expressed in developmental nerves and Sonic hedgehog protein (dhh homologous) has therapeutic effects in neuronal survival, we attempted to investigate the possible ...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Stress and Atherogenesis: Smooth Muscle Cell Mitogenic Activity and other Biochemical Changes Associated with Sera of \"Stressed\" Subjects

The proliferation of smooth muscle cells in the arterial wall (VSMC) is considered to play a key role in the development of atherosclerosis. To investigate the possible contribution of "stress" (experimentally-induced) to this process, blood from healthy volunteers, ages 21 to 65, screened to exclude major risk factors for coronary heart disease, was assayed for mitogenic activity after the sub...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 40  شماره 

صفحات  -

تاریخ انتشار 2010